Math. & Comp. Sci. Dept.

Second Incomplete Exam.

August 4, 1998 Time: 75 min.

Calculators and Mobile Phones are not allowed.

- 1. Find the equation of the normal line to the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$ at the point (2,0)
- 2) Use differentials to find a linear approximation for:

$$\frac{(2.98)^3-4}{\sqrt{298}}$$

3. Sate the mean value theorem, and use it to show that for all x > 0,

$$(1+x)^{\frac{3}{2}} > 1 + \frac{3}{2}x$$

- 4 A square picture having sides 2 ft long is hung on a wall such that the base is 6 ft above the floor if a person whose eye level is 5 ft above the floor looks at the picture and if θ is the angle between the line of sight and the top and bottom of the picture, find the person's distance from the wall a which θ has its maximum value.
- 5 Given $f(x) = x + \frac{1}{x}$. Show that the local minimum of f is greater than the local Maximum.
- 6. Evaluate

a)
$$\int \sqrt{z} \cos \sqrt{z^3} dz$$
,

b)
$$\int (5+\frac{1}{x})^2 \frac{1}{x^2} dx$$
.

7 Let

$$f(x) = \frac{x-2}{\sqrt[3]{x^2-4}}$$

- a) Find the vertical and horizontal asymptotes for the graph of f (if any).
- b) Find the intervals on which f is increasing or decreasing, and find the local extrema of f (if any).
- c) Find the intervals on which the graph of f is concave upward or concave downward, and find the points of inflection (if any).
- d) Sketch the graph of f.